Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method
نویسندگان
چکیده
منابع مشابه
A primal-dual method for conic constrained distributed optimization problems
We consider cooperative multi-agent consensus optimization problems over an undirected network of agents, where only those agents connected by an edge can directly communicate. The objective is to minimize the sum of agentspecific composite convex functions over agent-specific private conic constraint sets; hence, the optimal consensus decision should lie in the intersection of these private se...
متن کاملPrimal–dual Methods for Nonlinear Constrained Optimization
. . . If a function of several variables should be a maximum or minimum and there are between these variables one or several equations, then it will be suffice to add to the proposed function the functions that should be zero, each multiplied by an undetermined quantity, and then to look for the maximum and the minimum as if the variables were independent; the equation that one will find combin...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization
Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we...
متن کاملRandom Walk Distributed Dual Averaging Method For Decentralized Consensus Optimization
In this paper, we address the problem of distributed learning over a decentralized network, arising from scenarios including distributed sensors or geographically separated data centers. We propose a fully distributed algorithm called random walk distributed dual averaging (RW-DDA) that only requires local updates. Our RW-DDA method, improves the existing distributed dual averaging (DDA) method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2014
ISSN: 0018-9286,1558-2523,2334-3303
DOI: 10.1109/tac.2014.2308612